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Abstract 

Current Augmented Reality (AR) gaming setups require a        
depth-sensing camera attached to a head-mounted-display      
(HMD) such as the Oculus Rift. This provides the developers          
with primitive surface detection features (e.g. floors), but not         
the ability to detect interesting real-world objects (eg. chairs).         
AR games are consequently restricted to displaying visual        
content on planes, limiting player immersion. We propose a         
simple, cross-platform framework (Scene++) that enables      
developers to utilize real-world objects in their games. 
 
Using Scene++, the developer can query the location of         
real-world objects relative to the viewer (“cup is x meters          
away”) and their pose (“cup is upside-down”). To accomplish         
this, we use a cloud-based architecture that analyzes images         
from the camera with cutting-edge deep-learning algorithms       
(Mask-RCNN ​[3]​, DenseFusion [4]). We then use the        
depth-sensing camera to better localize the objects. Finally,        
we demonstrate the capabilities of our framework by        
attaching a game onto an object (overlaying a virtual         
dartboard game onto a circular clock). 
 
We found that, by offloading scene understanding       
computation to the cloud, Scene++ was able to improve the          
AR development workflow with minimal performance      
impact — maintaining at least 40 frames per second         
throughout gameplay. Thus, developers save time and effort        
by shifting focus to game development. 

Motivation and Problem Formulation 

Our project is motivated by our desire to create a unique           
entertainment experience that cannot be accomplished      
through traditional means (e.g movies, music, outdoors,       
standard video games, etc...). Specifically, we believe that        
pushing the bounds of Virtual Reality (VR) and Augmented         

Reality (AR) can alter the way people interact with each          
other. As such, one way VR/AR can improve and become          
more appealing is to create more engaging and customized         
content. 
 
We observe that AR content is mainly limited by the basic           
scene understanding features AR platforms provide. To       
illustrate, most AR platforms only provide wall and floor         
recognition features. We believe that if developers were        
easily able to detect and locate interesting objects in the          
scene (e.g. cup, chair, table, TV, vase, etc.), they would be           
able to create more engaging content that allows users to          
interact with their surroundings in a more meaningful way. 
  
As such, we have developed a framework (dubbed Scene++)         
to provide developers with a tool that: 
 

1) Can be used on multiple HMDs (Oculus, Vive, etc.) 
2) Can be used without sacrificing game engine and        

rendering performance 
3) Abstracts away the computer-vision aspects of AR       

game development by providing developers with      
usable scene understanding information (location of      
objects in game world, type of objects, etc.) 

 
As an example application, developers could automatically       
augment the user environment with fun and entertaining        
activities, akin to a recreational room. The application would         
detect plain feature objects (e.g table, circular clock, trash         
bin, cup, bed, etc.), and recognize that certain “activities” can          
augment these objects, and further enable the user to start          
these activities. The application would be able to detect a          
circular clock on the wall, and augment it with a dart board            
gaming experience, with which the user can interact with. It          
could also detect a rectangular table and overlay a ping-pong          
table on top of it, and have users play. 
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Fig. 0: Detecting Location of Interesting Objects in a Scene 

Technical Approach 

 

 
Fig. 1: System Architecture Used to Run Scene++ 

To make Scene++ perform image processing and object        
localization component of the framework efficiently and       
without consuming local computing power, we offloaded       
computer vision computation to the cloud . Finally, the         
output of the cloud component is sent via a asynchronous          
communication protocol to the game-engine. 

Cloud Computing Side 

To enable us to offload the heavy computation tasks to the           
cloud, we used the architecture shown in Fig. 2. The          
architecture consists of two main parts: the client side, which          
resides on the PC and handles the image data transmission          
(as well as game simulation), and the server side, which runs           
on the cloud instance and executes the scene understanding         
algorithms. 
 

1. Server Side​: The server side is made of two main          
components, the Asyncio Server and the Deep       
Learning Object Detector. 
● Asyncio Server: runs websocket server for      

communicating with the client. The server      

receives the incoming data stream from the client        
side and send it to the deep learning object         
detector. After the deep learning algorithm is       
done, the server sends the detection results back        
to the client side.  

● Deep Learning Object Detector: analyzes the      
image byte stream and uses Mask-RCNN      
(object detection algorithm) to recognize objects      
in the current frame. 

 
2. Client Side​: The client side is made of four main          

components, the Camera Capture component, the      
Local Compression component, Asyncio Client     
component, and the Action component. 
● Camera Capture: uses camera library to capture       

image output from the device camera. 
● Local Compression: processes raw image data      

from camera and compresses it to reduce file        
size, then encodes the raw image data into a byte          
stream. 

● Asyncio Client: runs websocket clients and      
communicates with the server. The client sends       
the image data to the server continuously and        
then receives object detection data. 

● Action: reacts to the detected object in the scene. 
 

3. Pipeline Workflow Overview​: Each image frame      
captured by the Camera Capture component is       
compressed by Local Compression component.     
Then the compressed image is encoded into a byte         
stream and sent to the server through a websocket         
connection by the Asyncio Client. After the       
cloud Asyncio Server receives the image frame, it        
shares the image with the Deep Learning Object        
Detector for processing. Afterwards, the cloud      
Asyncio Server sends the detection results as a        
string through websocket to the client. The device        
Asyncio Client receives the object information and       
sends it to the Action Component for reaction. 

 

 

Fig. 2: Cloud Computing Architecture 



4. Communication Protocol​: To enable real-time     
performance, the communication protocol needs to      
be low level enough that it introduces minimal        
latency. Specifically, we chose websocket as our       
main communication protocol. Another option to      
ensure the lowest possible network latency is to use         
raw TCP, but the direct use of TCP has limited          
speed advantage [5]. Websocket allows multiple      
connections to a single server, and is easy to use in           
an existing web framework like the python aiohttp        
library. Since websocket ensures easy interfacing      
with the rest of the application, while also        
providing a more secure interface for the streamed        
video frames (WSS protocol encrypts streams using       
HTTPS) it is the best choice for our use case. 
 

5. Deep Learning Object Detection​: Deep learning      
based object detection algorithms have gained      
significant traction due to their rapidly improving       
performance on some of the most well-known       
image classification datasets such as ImageNet [1]       
and COCO [2]. For this work, we mainly focus on          
adapting the Mask-RCNN object detection     
algorithm to a cloud computing friendly      
configuration, which is shown as the Deep Learning        
Object Detector in Fig. 1. Given an image from the          
the client side, the following steps are performed on         
the image to detect objects, as shown in Fig.2.  
● Regional Proposal network: Images are passed      

through a Convolutional Neural Network (CNN)      
based regional proposal network to detect region       
of interest (ROI).  

● Classification Branch: Detected ROIs are passed      
through a classification branch to classify the       
type of the objects within the current ROIs. For         
the fully supported list of objects, see Appendix        
I.  

● Bounding Box Detection Branch: Detected ROIs      
are passed through a bounding box detection       
branch to predict the precise bounding boxes for        
the current object.  

● Mask Branch: Detected ROIs are also passed       
through a mask branch to perform the per-pixel        
classification for the ROIs.  

For more details about the method, please reference        
the original paper [4].  

 

Fig. 3: Mask-RCNN Network Design 

Gaming Side 

To showcase how Scene++ can be used within a real          
application, we chose the following game development setup        
(as seen in Fig. 1): 

1) Oculus Rift HMD [5] 
2) ZED Mini depth-sensing camera (attached to the 

HMD) [6] 
3) Unity3D [7] 

 
We chose Unity3D as an example game engine for practical          
reasons: it is free for individual developers, is widely used by           
independent game development companies, and it interfaces       
well with popular HMDs (such as the Oculus or the HTC           
Vive) through readily available plug-ins. The following are        
the steps we take in our pipeline to run an example           
application: 
 

1. AR Display: using the ZED Mini camera attached        
to the HMD, we replace the VR display with an AR           
display by forwarding the ZED Mini image data to         
the display screens in the HMD. This is facilitated         
by the ZED-Mini Unity3D plug-in. 

 
 

2. Spatial Mapping: We leverage the ZED Mini’s       
SLAM-based spatial mapping capabilities in order      
to build a mesh of the surrounding world with the          
world coordinates as the reference point. We later        
use this mesh for raycasting intersections that allow        
us to position virtual objects on the screen. 
 



 

Fig. 4: Spatial Mapping on a Scene with Circular Clocks 

3. Image Data Communication: ​after the spatial map       
is built, we proceed to send the image and         
depth-map data to the cloud server. This is done         
with WebSocketSharp[8], a websocket-based    
communication library for C# (the main scripting       
language for Unity3D). For each image sent, we        
save the camera state at the point in time the image           
is sent so we can tell the point-of-view of the user           
when we use the data later on. 
 

4. Object Localization Data Parsing: ​upon receiving      
data from the cloud server, we parse it into multiple          
objects. Each objects holds: its id/type, the bounding        
box in screen-space, the confidence of the algorithm        
as to the object’s presence, and a bitmap mask. 
 

5. Game Object Overlay: ​given the parsed data, we        
proceed to raycast virtual rays into the bounding box         
of each object. If the ray hits the spatial map, then           
we proceed to overlay the appropriate game object        
in world space (e.g. the ray that went through the          
bounding box of a real circular clock hits a triangle          
on the mesh that corresponds to a location on the          
wall). We proceed to overlay a dart board that the          
user can interact with 
 

 

Fig. 5: Dart-boards Overlayed on Top of Detected Circular Clocks 

Evaluation 
 
We used the following configurations for our cloud server         
and our local game-engine client: 
 

1. Cloud instance configuration: 
● Oct   Core   Intel(R)   Xeon(R)   CPU 

E5-2623   v4   @2.60GHz 
● 32 GB RAM 
● Paperspace Network 
● NVIDIA Quadro P4000, 8GB Dedicated 

Video RAM 
● Ubuntu 16.04.4 LTS 

2. Client configuration: 
● Intel(R) Core(™) i7-8740H CPU 

@2.2GHz 
● NVIDIA GeForce GTX 1060 (Notebook) 
● 16 GB RAM 
● Microsoft Windows 10 Home 

 
We evaluated Scene++ based on the following criteria: 
 

1. Object Detection Variety: ​How many different      
objects are recognizable and classifiable by our       
platform? How robust are we to size and shape?         
How accurate are our labels? How does the network         
perform on unseen objects? 

 
2. Cloud Computing Latency: ​What is the latency       

introduced when images are streamed between the       
local machine and the cloud? How soon after an         
object comes into frame is it detected?  

 
3. Spatial Mapping Fluidity: ​Once an object is       

labeled, does it persist? Are the labels reliable over         
extended periods of play time?  
 

4. Frames Per Second (FPS): ​What is the average fps         
during our test application? How stable is the        
framerate?  Do people feel nauseous? 

Discussion and Findings 

Object Detection Variety: ​Our system can detect up to 80          
different objects concurrently and the position is robust to         
sudden and fast head movements. Full list of supported         
objects can be seen in see Appendix I. Tags very rarely are            
disjoint from the item they are trying to label and even then            
the tag repositioning system works quite well, repositioning        
tags if the item strays too far from its original location. This            
also means that our tags accurately stay attached even to          
moving objects (assuming the velocity is sufficiently slow).  
 



As shown in Fig. 5, most objects in image are correctly           
labeled. We have observed rare cases of the system assigning          
erroneous labels to objects but this only tends to happen          
when that object is both one it cannot detect and one that is             
featured very prominently in the frame (e.g. a loop of cord           
when viewed very up close an on a monochrome background          
was once labeled as a tennis racket). However, upon         
inspection, the confidence given for these labels was        
significantly lower than most objects. Thus, if we desire         
precision, we can sufficiently tune our confidence interval to         
eliminate almost all instances of mislabeling. 

 
Cloud Computing Latency: ​To measure the detection       
latency, we set up a test image which contains only a single            
person. The time between the image being sent to the server           
and the object data being received is reported in Table II. To            
accommodate network latency based on time of day, we         
measured the latency 6 times in the same day.  
 

 Sunnyvale to San 
Francisco (41.5 miles) 

Sunnyvale to New 
York (2937.8 mi) 

Round Trip 
Time (seconds) 

0.07661 0.21073 

Table I. Round trip time for data size 13.5k Bytes 
 

Time Total Delay Time Total Delay 

8:00 AM 0.562 6:00 PM 0.651 

11:00 AM 0.687 9:00 PM 0.756 

3:00 PM 0.585 12:00 AM  0.494 

Table II. Time between frame of person showing up and receiving 
detection of person on client side (between Sunnyvale & San 
Francisco) 

 
On the client side, a manual delay between sending frames          
was originally inserted so as to avoid the associated         
client-side lag, but sending the images at one fourth         
resolution asynchronously reduces that lag to a point where it          
is not perceptible to the user. This lets us send frames to the             
server without concern for client-side performance impact. 
 
Spatial Mapping Fluidity: ​Scene++ is able to recalibrate        
and readjust the spatial mapping while the application runs,         
making object repositioning and labeling robust. Without real        
time recalibration, user interaction would not be enjoyable:        
there would be certain iterations where the application would         
try to synchronize the virtual objects with the real objects and           
the entire application would stop in order to have every          
object aligned. In addition, between each synchronize       
operation, the user would notice that certain object positions         
and labels are gradually becoming misaligned. Real time        

spatial mapping is critical to making Scene++ a user-friendly         
experience. 
 
Frames Per Second (FPS): ​Scene++ is able to maintain a          
constant 40 or more frames, which means that the user can           
interact with the system nicely without becoming too dizzy.         
There are barely any lag or jumps in the visuals as well,            
making it comfortable for the user to work with. 

 

 

Fig.5: Spatial Mapping on a Scene with Circular Clocks 

 
Major Challenges: ​We found that the main application        
bottleneck was The ZED Mini. Specifically, the ZED Mini         
was designed to be used for low throughput AR applications.          
In our case, rendering and sending image data to the cloud           
became costly. Our diagnosis shows that the primary issue         
resides within the bandwidth of the USB-C attached to the          
ZED Mini, which does not allow for frequent and efficient          
image data processing tasks. Although we have not        
experimented with it ourselves, we recommend using the        
high-performance ZED Camera instead. 

Ethical Considerations and Societal Impact 

1. Ethical Considerations: ​While Scene++ does not      
add significant ethical concerns to the AR industry,        
it is still exposed to standard problems related to         
video game violence. With AR, there is an added         
layer of reality attached to the gaming experience.        
One possible concern would be whether or not to         
allow sensitive objects such as weapons, people, and        
animals to be detected. In our framework, we can         
easily disable detecting such objects such that it is         
harder for developers to allow interacting with them. 
 

2. Societal Impact: ​The main societal benefit Scene++       
brings is enhanced and immersive AR entertainment       



experiences. However, our platform can be extended       
such that it applies in more practical industrial        
settings such as aiding human laborers. An example        
of this would be detecting perished food items in a          
supermarket, or sorting through raw materials in a        
factory. With Scene++, this can be done with high         
accuracies even at low resolutions. 

Conclusion and Future Works 

Through this project, we have demonstrated the capacity of         
this technology to be effectively deployed to modern AR/VR         
consumer devices. With cloud computing, the performance       
impact of object detection and localization is kept to a          
minimum, allowing us to effectively run the software on         
hardware that was not specifically engineered to perform this         
task. Additionally, the versatility and robustness of our labels         
over long periods of game interaction demonstrates the        
capability of the technology to be implemented in a         
real-world scenario without adversely affecting the end user        
experience. 
 
This accomplishment of a playable frame rate, despite using         
only general-purpose hardware, shows that this technology       
has potential to become widely used in consumer        
applications, especially on devices with dedicated hardware.       
This dedicated hardware should include a built-in front        
facing camera with depth-sensing capability and a low        
latency method of displaying the frames to the end-user         
through the HMD. With hardware such as this, the 90 or           
higher fps baseline for consumer VR applications should be         
readily achievable.  
 
Once the hardware becomes sufficiently sophisticated, future       
work should explore the possibility of incorporating features        
such as pose estimation into the object detection pipeline.         
Pose detection would allow for much more meaningful game         
logic. As an example, if we had a scene where a real-world            
cup was filled with virtual liquid, the game would be able to            
determine if someone had knocked over the cup and would          
then spill the in-game water that it contained. This type of           
immersive real-world interaction would open the door for a         
variety of novel game concepts that would give AR a much           
larger selection of unique and memorable content with which         
to market the burgeoning platform. 
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Appendix 

Appendix I: List of Supported Objects: 
 

person elephant wine glass dining table 

bicycle bear cup toilet 

car zebra fork tv 

motorcycle giraffe knife laptop 

airplane backpack spoon mouse 

bus umbrella bowl remote 

train handbag banana keyboard 

truck tie apple cell phone 

boat suitcase sandwich microwave 

traffic light frisbee orange oven 

fire hydrant skis broccoli toaster 

stop sign snowboard carrot sink 

parking meter sports ball hot dog refrigerator 

bench kite pizza book 

bird baseball bat donut clock 

cat 
baseball 

glove cake vase 

dog skateboard chair scissors 

horse surfboard couch teddy bear 

sheep tennis racket potted plant hair drier 

cow bottle bed toothbrush 

 


