
Scene++: Making AR Immersive

Authors:​ Zhengyi Luo, Ziad Ben Hadj-Alouane, Henry Zhu, Liam Dugan
University of Pennsylvania School of Engineering and Applied Sciences, CIS Department

zhengyil@seas.upenn.edu​, ​ziadb@seas.upenn.edu​, ​henryzhu@seas.upenn.edu​, ​ldugan@seas.upenn.edu

Advisors: ​Professor Stephen Lane, Professor Ani Nenkova

Abstract

Current Augmented Reality (AR) gaming setups require a
depth-sensing camera attached to a head-mounted-display
(HMD) such as the Oculus Rift. This provides the developers
with primitive surface detection features (e.g. floors), but not
the ability to detect interesting real-world objects (eg. chairs).
AR games are consequently restricted to displaying visual
content on planes, limiting player immersion. We propose a
simple, cross-platform framework (Scene++) that enables
developers to utilize real-world objects in their games.

Using Scene++, the developer can query the location of
real-world objects relative to the viewer (“cup is x meters
away”) and their pose (“cup is upside-down”). To accomplish
this, we use a cloud-based architecture that analyzes images
from the camera with cutting-edge deep-learning algorithms
(Mask-RCNN ​[3]​, DenseFusion [4]). We then use the
depth-sensing camera to better localize the objects. Finally,
we demonstrate the capabilities of our framework by
attaching a game onto an object (overlaying a virtual
dartboard game onto a circular clock).

We found that, by offloading scene understanding
computation to the cloud, Scene++ was able to improve the
AR development workflow with minimal performance
impact — maintaining at least 40 frames per second
throughout gameplay. Thus, developers save time and effort
by shifting focus to game development.

Motivation and Problem Formulation

Our project is motivated by our desire to create a unique
entertainment experience that cannot be accomplished
through traditional means (e.g movies, music, outdoors,
standard video games, etc...). Specifically, we believe that
pushing the bounds of Virtual Reality (VR) and Augmented

Reality (AR) can alter the way people interact with each
other. As such, one way VR/AR can improve and become
more appealing is to create more engaging and customized
content.

We observe that AR content is mainly limited by the basic
scene understanding features AR platforms provide. To
illustrate, most AR platforms only provide wall and floor
recognition features. We believe that if developers were
easily able to detect and locate interesting objects in the
scene (e.g. cup, chair, table, TV, vase, etc.), they would be
able to create more engaging content that allows users to
interact with their surroundings in a more meaningful way.

As such, we have developed a framework (dubbed Scene++)
to provide developers with a tool that:

1) Can be used on multiple HMDs (Oculus, Vive, etc.)
2) Can be used without sacrificing game engine and

rendering performance
3) Abstracts away the computer-vision aspects of AR

game development by providing developers with
usable scene understanding information (location of
objects in game world, type of objects, etc.)

As an example application, developers could automatically
augment the user environment with fun and entertaining
activities, akin to a recreational room. The application would
detect plain feature objects (e.g table, circular clock, trash
bin, cup, bed, etc.), and recognize that certain “activities” can
augment these objects, and further enable the user to start
these activities. The application would be able to detect a
circular clock on the wall, and augment it with a dart board
gaming experience, with which the user can interact with. It
could also detect a rectangular table and overlay a ping-pong
table on top of it, and have users play.

mailto:zhengyil@seas.upenn.edu
mailto:ziadb@seas.upenn.edu
mailto:henryzhu@seas.upenn.edu
mailto:ldugan@seas.upenn.edu

Fig. 0: Detecting Location of Interesting Objects in a Scene

Technical Approach

Fig. 1: System Architecture Used to Run Scene++

To make Scene++ perform image processing and object
localization component of the framework efficiently and
without consuming local computing power, we offloaded
computer vision computation to the cloud . Finally, the
output of the cloud component is sent via a asynchronous
communication protocol to the game-engine.

Cloud Computing Side

To enable us to offload the heavy computation tasks to the
cloud, we used the architecture shown in Fig. 2. The
architecture consists of two main parts: the client side, which
resides on the PC and handles the image data transmission
(as well as game simulation), and the server side, which runs
on the cloud instance and executes the scene understanding
algorithms.

1. Server Side​: The server side is made of two main
components, the Asyncio Server and the Deep
Learning Object Detector.
● Asyncio Server: runs websocket server for

communicating with the client. The server

receives the incoming data stream from the client
side and send it to the deep learning object
detector. After the deep learning algorithm is
done, the server sends the detection results back
to the client side.

● Deep Learning Object Detector: analyzes the
image byte stream and uses Mask-RCNN
(object detection algorithm) to recognize objects
in the current frame.

2. Client Side​: The client side is made of four main

components, the Camera Capture component, the
Local Compression component, Asyncio Client
component, and the Action component.
● Camera Capture: uses camera library to capture

image output from the device camera.
● Local Compression: processes raw image data

from camera and compresses it to reduce file
size, then encodes the raw image data into a byte
stream.

● Asyncio Client: runs websocket clients and
communicates with the server. The client sends
the image data to the server continuously and
then receives object detection data.

● Action: reacts to the detected object in the scene.

3. Pipeline Workflow Overview​: Each image frame
captured by the Camera Capture component is
compressed by Local Compression component.
Then the compressed image is encoded into a byte
stream and sent to the server through a websocket
connection by the Asyncio Client. After the
cloud Asyncio Server receives the image frame, it
shares the image with the Deep Learning Object
Detector for processing. Afterwards, the cloud
Asyncio Server sends the detection results as a
string through websocket to the client. The device
Asyncio Client receives the object information and
sends it to the Action Component for reaction.

Fig. 2: Cloud Computing Architecture

4. Communication Protocol​: To enable real-time
performance, the communication protocol needs to
be low level enough that it introduces minimal
latency. Specifically, we chose websocket as our
main communication protocol. Another option to
ensure the lowest possible network latency is to use
raw TCP, but the direct use of TCP has limited
speed advantage [5]. Websocket allows multiple
connections to a single server, and is easy to use in
an existing web framework like the python aiohttp
library. Since websocket ensures easy interfacing
with the rest of the application, while also
providing a more secure interface for the streamed
video frames (WSS protocol encrypts streams using
HTTPS) it is the best choice for our use case.

5. Deep Learning Object Detection​: Deep learning
based object detection algorithms have gained
significant traction due to their rapidly improving
performance on some of the most well-known
image classification datasets such as ImageNet [1]
and COCO [2]. For this work, we mainly focus on
adapting the Mask-RCNN object detection
algorithm to a cloud computing friendly
configuration, which is shown as the Deep Learning
Object Detector in Fig. 1. Given an image from the
the client side, the following steps are performed on
the image to detect objects, as shown in Fig.2.
● Regional Proposal network: Images are passed

through a Convolutional Neural Network (CNN)
based regional proposal network to detect region
of interest (ROI).

● Classification Branch: Detected ROIs are passed
through a classification branch to classify the
type of the objects within the current ROIs. For
the fully supported list of objects, see Appendix
I.

● Bounding Box Detection Branch: Detected ROIs
are passed through a bounding box detection
branch to predict the precise bounding boxes for
the current object.

● Mask Branch: Detected ROIs are also passed
through a mask branch to perform the per-pixel
classification for the ROIs.

For more details about the method, please reference
the original paper [4].

Fig. 3: Mask-RCNN Network Design

Gaming Side

To showcase how Scene++ can be used within a real
application, we chose the following game development setup
(as seen in Fig. 1):

1) Oculus Rift HMD [5]
2) ZED Mini depth-sensing camera (attached to the

HMD) [6]
3) Unity3D [7]

We chose Unity3D as an example game engine for practical
reasons: it is free for individual developers, is widely used by
independent game development companies, and it interfaces
well with popular HMDs (such as the Oculus or the HTC
Vive) through readily available plug-ins. The following are
the steps we take in our pipeline to run an example
application:

1. AR Display: using the ZED Mini camera attached
to the HMD, we replace the VR display with an AR
display by forwarding the ZED Mini image data to
the display screens in the HMD. This is facilitated
by the ZED-Mini Unity3D plug-in.

2. Spatial Mapping: We leverage the ZED Mini’s
SLAM-based spatial mapping capabilities in order
to build a mesh of the surrounding world with the
world coordinates as the reference point. We later
use this mesh for raycasting intersections that allow
us to position virtual objects on the screen.

Fig. 4: Spatial Mapping on a Scene with Circular Clocks

3. Image Data Communication: ​after the spatial map
is built, we proceed to send the image and
depth-map data to the cloud server. This is done
with WebSocketSharp[8], a websocket-based
communication library for C# (the main scripting
language for Unity3D). For each image sent, we
save the camera state at the point in time the image
is sent so we can tell the point-of-view of the user
when we use the data later on.

4. Object Localization Data Parsing: ​upon receiving
data from the cloud server, we parse it into multiple
objects. Each objects holds: its id/type, the bounding
box in screen-space, the confidence of the algorithm
as to the object’s presence, and a bitmap mask.

5. Game Object Overlay: ​given the parsed data, we
proceed to raycast virtual rays into the bounding box
of each object. If the ray hits the spatial map, then
we proceed to overlay the appropriate game object
in world space (e.g. the ray that went through the
bounding box of a real circular clock hits a triangle
on the mesh that corresponds to a location on the
wall). We proceed to overlay a dart board that the
user can interact with

Fig. 5: Dart-boards Overlayed on Top of Detected Circular Clocks

Evaluation

We used the following configurations for our cloud server
and our local game-engine client:

1. Cloud instance configuration:
● Oct Core Intel(R) Xeon(R) CPU

E5-2623 v4 @2.60GHz
● 32 GB RAM
● Paperspace Network
● NVIDIA Quadro P4000, 8GB Dedicated

Video RAM
● Ubuntu 16.04.4 LTS

2. Client configuration:
● Intel(R) Core(™) i7-8740H CPU

@2.2GHz
● NVIDIA GeForce GTX 1060 (Notebook)
● 16 GB RAM
● Microsoft Windows 10 Home

We evaluated Scene++ based on the following criteria:

1. Object Detection Variety: ​How many different
objects are recognizable and classifiable by our
platform? How robust are we to size and shape?
How accurate are our labels? How does the network
perform on unseen objects?

2. Cloud Computing Latency: ​What is the latency

introduced when images are streamed between the
local machine and the cloud? How soon after an
object comes into frame is it detected?

3. Spatial Mapping Fluidity: ​Once an object is

labeled, does it persist? Are the labels reliable over
extended periods of play time?

4. Frames Per Second (FPS): ​What is the average fps
during our test application? How stable is the
framerate? Do people feel nauseous?

Discussion and Findings

Object Detection Variety: ​Our system can detect up to 80
different objects concurrently and the position is robust to
sudden and fast head movements. Full list of supported
objects can be seen in see Appendix I. Tags very rarely are
disjoint from the item they are trying to label and even then
the tag repositioning system works quite well, repositioning
tags if the item strays too far from its original location. This
also means that our tags accurately stay attached even to
moving objects (assuming the velocity is sufficiently slow).

As shown in Fig. 5, most objects in image are correctly
labeled. We have observed rare cases of the system assigning
erroneous labels to objects but this only tends to happen
when that object is both one it cannot detect and one that is
featured very prominently in the frame (e.g. a loop of cord
when viewed very up close an on a monochrome background
was once labeled as a tennis racket). However, upon
inspection, the confidence given for these labels was
significantly lower than most objects. Thus, if we desire
precision, we can sufficiently tune our confidence interval to
eliminate almost all instances of mislabeling.

Cloud Computing Latency: ​To measure the detection
latency, we set up a test image which contains only a single
person. The time between the image being sent to the server
and the object data being received is reported in Table II. To
accommodate network latency based on time of day, we
measured the latency 6 times in the same day.

 Sunnyvale to San
Francisco (41.5 miles)

Sunnyvale to New
York (2937.8 mi)

Round Trip
Time (seconds)

0.07661 0.21073

Table I. Round trip time for data size 13.5k Bytes

Time Total Delay Time Total Delay

8:00 AM 0.562 6:00 PM 0.651

11:00 AM 0.687 9:00 PM 0.756

3:00 PM 0.585 12:00 AM 0.494

Table II. Time between frame of person showing up and receiving
detection of person on client side (between Sunnyvale & San
Francisco)

On the client side, a manual delay between sending frames
was originally inserted so as to avoid the associated
client-side lag, but sending the images at one fourth
resolution asynchronously reduces that lag to a point where it
is not perceptible to the user. This lets us send frames to the
server without concern for client-side performance impact.

Spatial Mapping Fluidity: ​Scene++ is able to recalibrate
and readjust the spatial mapping while the application runs,
making object repositioning and labeling robust. Without real
time recalibration, user interaction would not be enjoyable:
there would be certain iterations where the application would
try to synchronize the virtual objects with the real objects and
the entire application would stop in order to have every
object aligned. In addition, between each synchronize
operation, the user would notice that certain object positions
and labels are gradually becoming misaligned. Real time

spatial mapping is critical to making Scene++ a user-friendly
experience.

Frames Per Second (FPS): ​Scene++ is able to maintain a
constant 40 or more frames, which means that the user can
interact with the system nicely without becoming too dizzy.
There are barely any lag or jumps in the visuals as well,
making it comfortable for the user to work with.

Fig.5: Spatial Mapping on a Scene with Circular Clocks

Major Challenges: ​We found that the main application
bottleneck was The ZED Mini. Specifically, the ZED Mini
was designed to be used for low throughput AR applications.
In our case, rendering and sending image data to the cloud
became costly. Our diagnosis shows that the primary issue
resides within the bandwidth of the USB-C attached to the
ZED Mini, which does not allow for frequent and efficient
image data processing tasks. Although we have not
experimented with it ourselves, we recommend using the
high-performance ZED Camera instead.

Ethical Considerations and Societal Impact

1. Ethical Considerations: ​While Scene++ does not
add significant ethical concerns to the AR industry,
it is still exposed to standard problems related to
video game violence. With AR, there is an added
layer of reality attached to the gaming experience.
One possible concern would be whether or not to
allow sensitive objects such as weapons, people, and
animals to be detected. In our framework, we can
easily disable detecting such objects such that it is
harder for developers to allow interacting with them.

2. Societal Impact: ​The main societal benefit Scene++
brings is enhanced and immersive AR entertainment

experiences. However, our platform can be extended
such that it applies in more practical industrial
settings such as aiding human laborers. An example
of this would be detecting perished food items in a
supermarket, or sorting through raw materials in a
factory. With Scene++, this can be done with high
accuracies even at low resolutions.

Conclusion and Future Works

Through this project, we have demonstrated the capacity of
this technology to be effectively deployed to modern AR/VR
consumer devices. With cloud computing, the performance
impact of object detection and localization is kept to a
minimum, allowing us to effectively run the software on
hardware that was not specifically engineered to perform this
task. Additionally, the versatility and robustness of our labels
over long periods of game interaction demonstrates the
capability of the technology to be implemented in a
real-world scenario without adversely affecting the end user
experience.

This accomplishment of a playable frame rate, despite using
only general-purpose hardware, shows that this technology
has potential to become widely used in consumer
applications, especially on devices with dedicated hardware.
This dedicated hardware should include a built-in front
facing camera with depth-sensing capability and a low
latency method of displaying the frames to the end-user
through the HMD. With hardware such as this, the 90 or
higher fps baseline for consumer VR applications should be
readily achievable.

Once the hardware becomes sufficiently sophisticated, future
work should explore the possibility of incorporating features
such as pose estimation into the object detection pipeline.
Pose detection would allow for much more meaningful game
logic. As an example, if we had a scene where a real-world
cup was filled with virtual liquid, the game would be able to
determine if someone had knocked over the cup and would
then spill the in-game water that it contained. This type of
immersive real-world interaction would open the door for a
variety of novel game concepts that would give AR a much
larger selection of unique and memorable content with which
to market the burgeoning platform.

References

[1] ImageNet: imagenet is an image database organized according to
the wordnet hierarchy (currently only the nouns), in which each
node of the hierarchy is depicted by hundreds and thousands
of images.http://www.image-net.org. Accessed: 2019-04-25.

[2] COCO: coco is a large-scale object detection, segmentation,
andcaptioning dataset. ​http://cocodataset.org/​. Accessed:
2019-04-25.
[3] He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask
R-CNN. ​Proceedings of the IEEE International Conference on
Computer Vision​, ​2017​–​Octob​, 2980–2988.
https://doi.org/10.1109/ICCV.2017.322
[4]Wang, C., Xu, D., Zhu, Y., Martín-Martín, R., Lu, C., Fei-Fei, L.,
& Savarese, S. (2019). DenseFusion: 6D Object Pose Estimation by
Iterative Dense Fusion. Retrieved from
http://arxiv.org/abs/1901.04780
[5]Oculus Rift: Oculus Rift is a virtual reality headset developed
and manufactured by Oculus VR, a division of Facebook Inc.,
released on March 28, 2016. ​https://www.oculus.com/ Accessed:
2019-04-25.
[6]Zed Mini: Meet ZED Mini, the world's first camera for
mixed-reality. ​https://www.stereolabs.com/zed-mini/​. Accessed:
2019-04-25.
[7] Unity3D: Unity is a cross-platform real-time engine developed
by Unity Technologies, ​https://unity.com/​. Accessed: 2019-04-25.
[8]WebSocketSharp: WebSocketSharpis a C# implementation of the
Websocket protocal, ​https://github.com/sta/websocket-sharp​.
Accessed: 2019-04-25.

http://cocodataset.org/
http://arxiv.org/abs/1901.04780
https://www.oculus.com/
https://www.stereolabs.com/zed-mini/
https://unity.com/
https://github.com/sta/websocket-sharp

Appendix

Appendix I: List of Supported Objects:

person elephant wine glass dining table

bicycle bear cup toilet

car zebra fork tv

motorcycle giraffe knife laptop

airplane backpack spoon mouse

bus umbrella bowl remote

train handbag banana keyboard

truck tie apple cell phone

boat suitcase sandwich microwave

traffic light frisbee orange oven

fire hydrant skis broccoli toaster

stop sign snowboard carrot sink

parking meter sports ball hot dog refrigerator

bench kite pizza book

bird baseball bat donut clock

cat
baseball

glove cake vase

dog skateboard chair scissors

horse surfboard couch teddy bear

sheep tennis racket potted plant hair drier

cow bottle bed toothbrush

