
PARTS-BASED 3D OBJECT POSE ESTIMATION

Ziad Ben Hadj-Alouane

A THESIS

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of of Master of Science in Engineering

2020

Professor Kostas Daniilidis
Supervisor of Thesis Signature

Professor Rajeev Alur
Graduate Group Chairperson Signature

Kostas Daniilidis

Rajeev
Stamp

PARTS-BASED 3D OBJECT POSE ESTIMATION

c© COPYRIGHT

2020

Ziad Ben Hadj-Alouane

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

Dedicated to my loving parents Nejib and Atidel, and my close friend and brother

Houssem. Without your support, I would have not been able to learn and to grow as

much as I have.

Thank you from the bottom of my heart.

ii

ACKNOWLEDGEMENT

My special thanks to my advisor Professor Kostas Daniilidis for his guidance and

support. I am grateful for the resources he provided me, including extensive expert

knowledge on the subject matter, as well as access to the essential infrastructure

(GRASP Lab) needed to do my research.

Additionally, I am grateful for my friend Zhengyi (Zen) Luo for helping me with

conducting experiments, for reviewing my work, as well as for the long and fruitful

discussions about the relevant academic literature.

Alongside Zen, many other friends helped me throughout my college journey, and I

wanted to also thank them for their continuous support. They are too numerous to

name individually, but I’m sure they know who they are.

I would like to also thank my mentors Karl Shmeckpeper and Bernadette Bucher

for helping me navigate and utilize the resources at the GRASP Lab. Many other

wonderful people I met at the University of Pennsylvania helped me achieve my goals,

and I would like to thank them as well.

Last – but certainly not least – I would like to express my gratitude towards my par-

ents and brother. Without their unyielding love, unconditional support, and doubtless

trust, I would not have been able to achieve this work. Thank you for always guiding

me through the happiest and toughest times.

iii

ABSTRACT

PARTS-BASED 3D OBJECT POSE ESTIMATION

Ziad Ben Hadj-Alouane

Professor Kostas Daniilidis

The task of 3D object pose estimation consists of locating and orienting an object

in 3D space. Many solutions to this problem make use of a complex representation

of the object, such as 3D CAD models or point clouds. Unfortunately, this can

prove to be unmanageable in real-world settings due to the lack of such high-fidelity

representations or due to the growing size of the object catalog. Inspired by recent

advancements in 3D object decomposition, we present a method for 3D object pose

estimation that instead uses a compact parametric representation. Using this simple

representation as a prerequisite, our method first predicts the pose of the parts of the

object, then combines them into a final pose estimation. We demonstrate the success

of our parts-based method by comparing its performance to that of a standard baseline

method.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF ILLUSTRATIONS . ix

CHAPTER 1 : Introduction . 1

CHAPTER 2 : Background and Related Works 3

2.1 3D Object Pose Estimation . 3

2.2 3D Parametric Object Decomposition 24

CHAPTER 3 : Proposed Methodology . 31

3.1 Data Generation . 31

3.2 Model Training . 34

3.3 Model Evaluation . 36

CHAPTER 4 : Experiments . 37

4.1 Baseline: Direct Pose Regression . 37

4.2 Our Method: Parts-Based Pose Regression 38

4.3 Comparison . 40

4.4 Quaternions vs. 6D Rotation Representation 43

CHAPTER 5 : Conclusion . 46

v

APPENDIX . 47

BIBLIOGRAPHY . 47

vi

LIST OF TABLES

TABLE 1 : Experiment Summary (Quaternion Rotation) 40

TABLE 2 : Experiment Summary (6D Rotation) 43

vii

LIST OF ILLUSTRATIONS

FIGURE 1 : Pose Estimation Input-Output 3

FIGURE 2 : Object Detection vs. Pose Estimation 4

FIGURE 3 : Pose Estimation Input Priors 5

FIGURE 4 : Viewpoint Sampling in LINEMOD 8

FIGURE 5 : LINEMOD Multimodalities 9

FIGURE 6 : Scale Invariant Feature Transform (SIFT) 11

FIGURE 7 : MOPED Framework Pipeline 11

FIGURE 8 : Energy Components in Dense Object Coordinate Method . 12

FIGURE 9 : PoseCNN Architecture . 14

FIGURE 10 : Hough Voting for Object Centers 15

FIGURE 11 : Pose Ambiguities Due to Object Symmetry 16

FIGURE 12 : DenseFusion’s Iterative Pose Refinement 18

FIGURE 13 : Bin and Delta Model Architecture 19

FIGURE 14 : Toy Example of the Geodesic Bin and Delta Model 21

FIGURE 15 : Stacked-Hourglass CNN . 22

FIGURE 16 : Semantic Keypoints Method Outputs 23

FIGURE 17 : Cuboid Parametric Representation 24

FIGURE 18 : Cuboid Training Architecture 27

FIGURE 19 : Superquadric Shapes . 28

FIGURE 20 : Comparing Cuboids and Superquadrics 28

FIGURE 21 : ShapeNet Chair Category 32

FIGURE 22 : Samples of Generated Data 32

FIGURE 23 : Chair Instances used in Experiments 33

viii

FIGURE 24 : Example of Superquadric Decomposition of a Chair 34

FIGURE 25 : Parts-Based Pose Regression Architecture 35

FIGURE 26 : Baseline Loss Curves - Instance #1 37

FIGURE 27 : Baseline ADD Curve - All Instances 38

FIGURE 28 : Our Method’s Loss Curves - Instance #1 39

FIGURE 29 : Our Method’s ADD Curve - All Instances 39

FIGURE 30 : ADD Comparison . 41

FIGURE 31 : Chair Instance #3: Baseline vs. Our Method 42

FIGURE 32 : 6D Rotation - Our Method 44

FIGURE 33 : 6D Rotation - Baseline . 45

FIGURE 34 : Baseline Loss Curves . 47

FIGURE 35 : Our Method’s Loss Curves 48

FIGURE 36 : Chair Instance #1: Baseline vs. Our Method 49

FIGURE 37 : Chair Instance #2: Baseline vs. Our Method 50

ix

1. Introduction

Estimating the orientation (pose) of an object in 3D space generally requires a repre-

sentation of the said object. Complex and rich representations such as 3D computer-

aided design (CAD) models or 3D point clouds can help increase the accuracy of pre-

dictive models due to the high-fidelity information they pack. Unfortunately, these

representations come at a cost: (1) they are hard to acquire, (2) are non-negligible in

size, and (3) their numbers tend to grow as the set of objects expands. As such, many

solutions to 3D object pose estimation try to either not use a complex representation

or attempt to approximate it through other means.

However, with the field of 3D object decomposition seeing a reignited interest, it is

likely that future solutions to 3D pose estimation can make use of a rich yet compact

representation. The ability to accurately decompose an object into a small set of parts

may allow complex representation to be directly mapped to ”compressed” counter-

parts. As a consequence, many solutions to 3D pose estimation may beneficially relax

their requirements on the choice of object representation.

Inspired by this guiding insight, we propose a method that combines recent successes

in 3D object pose estimation and 3D parametric object decomposition. The contri-

butions of this thesis can be summarized as follows:

• A data generation pipeline that augments a single object pose into a set of pose

labels, one per object part.

• An architecture for predicting the pose of instances of objects using a parts-

based paradigm.

1

This thesis is organized as follows:

• Background and Related Works section, in which we describe different

state-of-the-art methodologies in 3D object pose estimation and 3D parametric

object decomposition.

• Propose Methodology section, in which we describe our method from the

data generation pipeline, to the model training and evaluation procedures.

• Experiments section, in which we analyze, compare, and discuss the various

results obtained from evaluating the pose predictors.

2

2. Background and Related Works

Our work builds upon two main fields: 3D object pose estimation and 3D parametric

object decomposition.

2.1. 3D Object Pose Estimation

2.1.1. Problem Definition and Importance

Given an input image, the problem of object pose estimation consists of determining

where an object of interest is in space and how it is oriented. Concretely, the pose of

an object is defined by a 3D orientation (rotation) and a 3D translation comprising

six degrees of freedom (6DOF). Both the 3D rotation and the translation are often

expressed relative to the camera coordinate system. The camera intrinsics are as-

sumed to be known (since these are readily available). A simple illustration of the

problem is shown in Figure 1.

Figure 1: Typically, a pose estimator predicts the 6DOF pose of an object given a
colored image containing the object of interest. In this case, the object of interest is
the red drill.1

Pose estimation has been of primary importance for a variety of computer vision tasks.

Most notably, it is crucial to be able to accurately and efficiently estimate the pose

of objects for robotic manipulation or for any application that involves interacting

with real world objects. In augmented reality, 6DOF pose estimation enables virtual

0Image credit Wang et al. (2019)

3

Figure 2: Illustration depicting the differences between object detection (left) and
pose estimation (right). An agent attempting to sit on a chair based on correct
detections by an object detector could end up sitting anywhere in the vicinity. Pose
estimation may offer a more precise solution.2

interaction and re-rendering of real world objects. As such, pose estimation has

been the focus of intense research in recent years, and is still considered a non-trivial

problem in many contexts.

It is important to distinguish between pose estimation and object detection. Lim

et al. (2014) describe the problem of an autonomous agent attempting to find a chair

to illustrate this difference. Using a state-of-the-art object detection system, the

agent finds a number of correct detections of chairs as shown in Figure 2. However,

with the estimated set of correct detections, the agent could end up sitting anywhere

from the bookshelf, to the floor. In contrast, estimating the pose of detected objects

may provide a better understanding of the environment, thus enabling more precise

interactions.

2.1.2. Input Assumptions

In its basic form, pose estimation is performed on inputs in the form of RGB colored

images (i.e., red, green, and blue color channels). In some models, some input priors

2Image credit Lim et al. (2014)
3Image credit Wang et al. (2019)

4

Figure 3: Common examples of input priors used in state-of-the-art 3D object pose
estimation. Note that it is possible to infer some of these priors using a combination
of them (e.g., a segmentation mask and a depth map could be used to generate a
point cloud). 3

may be used to add useful information. For example, some methods pre-process the

input images through a segmentation pipeline to generate a binary mask around the

object of interest. Such pre-processing steps are considered to be fairly accurate and

efficient due to the proliferation of fast and successful visual recognition models.

Other priors are more difficult to obtain through simple image pre-processing. For

example, some models require the availability of a 3D CAD model for each object. It

is also typical to see models requiring the availability of depth information (i.e., RGB-

D images) which has been made easier to obtain due to commercial depth cameras

(e.g., Microsoft’s Kinect depth camera). In Section 2.1.4, we discuss methods that use

a combination of the above restrictions to illustrate the variety of modern solutions.

Additionally, a common list of input priors is shown in Figure 3 for clarity.

Finally, assumptions can be made about the objects of interest to increase or decrease

5

the difficulty of the task. For example, certain ambitious models tackle class-based

(e.g., all chairs) or cross-category (e.g., any chair, cup, car etc.) pose estimation.

Others relax the prediction space and focus only on solving instance-based (e.g., a

specific chair) pose estimation.

2.1.3. Challenges

The challenges of pose estimation can be categorized into data availability and data

quality issues.

Data Availability

It turns out that many methods require high fidelity 3D models of the objects of

interest to be available. Although modern 3D reconstruction and scanning techniques

can generate 3D models of objects, they typically require significant effort. It is easy

to see how building a 3D model for every object is an infeasible task.

Additionally, RGB-D (color and depth) based methods cannot be made real-time

if deployed on most mobile phones and tablets due to the unavailability of depth

data. This is typical for mobile augmented reality applications. As such, substantial

research is dedicated to estimating poses of known objects using RGB images only.

Furthermore, pose data is difficult to collect efficiently. A large number of images need

to be taken, and generally need associated ground-truth pose label to be measured

accurately. Automating this process is not trivial and typically requires careful human

manipulation.

Data Quality

As we will elaborate on in Section 2.1.4, many classical approaches rely on extracting

object features from RGB-D data and performing 3D-2D correspondence grouping.

These methodologies heavily rely on handcrafted features and template matching

6

procedures that are empirically shown to have limited performance in presence of

heavy occlusion and lighting variation. This issue is accentuated when considering

the diversity of backgrounds that appear in real images. Indeed, many real world

scenes are cluttered, and consequently difficult to deal with.

Finally, methods that train a single network for multiple objects (class-based or

category-based) typically suffer from drops in accuracy as number of objects increases.

This is due to large variation of object appearances depending on the pose, lighting

conditions, and occlusion.

2.1.4. Methodologies

With the recent proliferation of Graphics Processing Units (GPUs), many publicly

available contributions to object pose estimation shifted from hand-engineered clas-

sical methods towards deep-learning (DL) based approaches. DL approaches, in the

context of 3D object pose estimation, leverage the efficacy of Convolutional Neural

Networks (CNN). These types of networks are known to automatically learn hierar-

chical features of image data, as demonstrated in massive successes in the areas of

image recognition and image segmentation. As such, we decided to split the works in

the literature into two types: classical methods, and deep-learning methods.

Classical Methods

Classical methods can be split into three main areas: template search-and-match

methods, keypoint correspondence methods, and dense feature methods. We will

present an overview of a past notable solution in each of these three categories.

Template Search-and-Match: Template methods typically use RGB-D images

to identify global (e.g., appearance, 3D shape etc.) features of the of the object. Once

the features are identified, the input is compared to a set of template images that

7

Figure 4: Red vertices represent the virtual camera centers used to generate templates.
The camera centers are uniformly sampled4.

are recorded using different viewpoints. Since each viewpoint is associated with a 3D

pose, matching the input against a template essentially provides a coarse estimate of

the pose of the object.

In Hinterstoisser et al. (2013), the authors build the template database offline by

rendering the CAD model of the object of interest. The rendered viewpoints are

sampled uniformly around an icosahedron, as shown in Figure 4.

The authors mention that this offline sampling approach has two main advantages

over other online sampling approaches:

1. Online template building requires careful human (or robot) interaction with the

camera and the environment. It is thus time consuming to generate templates

and learn features from them as the system is running.

2. It takes an educated user to be able to collect a well-sampled training set of

templates, let alone to recover the pose of these templates accurately.

Once the templates are collected, the system learns the following features: color

gradients (computed from the template RGB image), and associated surface normals

4Image credit Hinterstoisser et al. (2013)

8

Figure 5: A duck model with two discretized modalities: color gradients at the contour
(left), surface normals in the interior (middle), both modalities at the same time
(right). 5

(computed from the CAD model). To be specific, only color gradients around the

contour of the object silhouette are kept, since the authors assume textureless objects

that typically exhibit little to no texture variation in the interior of the silhouette.

In contrast, surface normals are only considered at the interior of the object. The

authors argue that the surface normals at the borders of the projected 3D objects are

seldom reliably estimated. Figure 5 illustrates these collected features.

Template matching is done following the LINEMOD technique presented in Hinter-

stoisser et al. (2011). In short, LINEMOD computes similarities between database

templates and patches of the input image by considering multiple modalities (e.g.,

color, depth). In the case of color gradient and surface normal features, the dot prod-

uct of the features at the template location and the input image patch is sufficient.

Finally, estimating the pose using detected templates is done by using the Iterative

Closest Point (ICP) algorithm. The crux of the algorithm is to align two input point

clouds of an object. In the case of Hinterstoisser et al. (2011), the input point clouds

are (1) the ground truth CAD model associated with the template and (2) the input

depth map segmented around the object of interest.

5Image credit Hinterstoisser et al. (2013)

9

Keypoint Correspondence: Keypoint correspondence methods typically have

three stages:

1. Keypoint Extraction, which intuitively refers to identifying local points of inter-

est around the object. Typically, a keypoint will have an associated pose as well

as a descriptor that generally describes the local region around it. Descriptors

usually contain summarized local information such as color gradients. Note that

a keypoint can be defined in 2D space (e.g., in the input image) or in 3D space

(e.g., typically the CAD model of the object).

2. Keypoint 2D-3D Correspondence, which refers to matching the 2D keypoints to

corresponding 3D keypoints in a database of processed 3D CAD models.

3. Pose Estimation, which is where most contributions in this space vary. In

short, the previously estimated 2D-to-3D correspondences are used to make a

pose hypothesis. Solutions to the Perspective-n-Point (PnP) problem such as

EPnP (Lepetit et al. (2009)) are often used to extract such a hypothesis.

An example of a keypoint method is the MOPED framework by Collet and Martinez.

MOPED builds a database of 3D keypoint features of 91 CAD models by running

rendered viewpoints through SIFT. SIFT was developed by Low (2004), and is a

state-of-the-art keypoint extraction method that is known to be scale and rotation

invariant, as well as robust to a wide range of noise transformations, illumination

changes, and 3D viewpoint alterations. Figure 6 illustrates the result of running

SIFT on an input image.

At inference time, MOPED extracts the 2D features of the input images which are

6Image credit Low (2004)

10

Figure 6: Illustration of the output of SIFT’s keypoint extraction. Each keypoint is
represented by a vector to visualize its scale, rotation, and position.6

Figure 7: Illustration of the MOPED pose estimation pipeline. (a) keypoint extrac-
tion with SIFT, (b) keypoint matching, (c) keypoint clustering by object ID, (d-e)
additional clustering of clusters, (f) pose hypothesis refinement, (g) final pose output.7

then matched against 3D object features stored in the database. Features are then

clustered by object ID, which intuitively means that spatially-close features generally

belong to the same object. At the final stages of MOPED, RANSAC-like outlier

detection is used to filter the clusters and generate pose hypotheses for each cluster. A

pose refinement and merging step is then applied to all the clusters to generate object-

level hypotheses for each detected object in the input image. Figure 7 illustrates the

MOPED framework in detail.

7Image credit Collet and Martinez

11

Dense Feature Methods: Brachmann et al. (2014) describe the primary short-

coming of template-based methods as the reliance on matching the complete template

to a target image. This essentially means that the object is encoded in a particular

pose with one “global” feature. This empirically leads to downgraded performance

when the object is occluded in the scene. The authors recommend encoding the ob-

ject with dense “local” features instead. They propose a hierarchical matching system

based on a random forest. The model first predicts dense (local) object coordinates,

and uses them to perform dense correspondences to recover the object pose.

Figure 8: The energies were calculated for different poses and projected into image
space using minimum projection. White stands for high energy dark blue for low
energy.8

The random forest they use is comprised of a set of decision trees. Each pixel of

the input RGB-D image is classified by each tree, and end up in one of the tree’s

leaves. This hierarchical structure is trained in a way that allows (1) gaining infor-

mation about which object a pixel might belong to and (2) the approximate position

of the object. Predicting the pose of the object is done after training the forest. The

authors formulate the pose estimation as an energy optimization problem comprised

by three components: a depth energy component (dense features), an object seg-

8Image credit Brachmann et al. (2014)

12

mentation component (sparse global features), and a coordinate component (dense

features). Computing the energy requires comparing synthetic images rendered using

the hypothesized pose with the observed depth values and the results of the forest.

Figure 8 illustrates the different energy components.

Deep-Learning Methods

In computer vision, most deep-learning methods employ some convolutional compo-

nent in the network architecture. In the case of object detection and recognition,

Convolutional Neural Networks (CNNs) have seen wide successes. CNNs are pre-

ferred in this space because of their ability to automatically learn features from raw

image data as well as for representing images in an abstract and hierarchical fashion.

This is done by successively stacking convolutional and pooling layers. Once a suit-

able network architecture is defined and the corresponding model is trained, CNNs

can cope with a large variety of object appearances and classes.

However, in the context of 3D object pose estimation, convolving over the input

images is just a component. The innovation in this space comes from defining input

constraints (e.g., RGB, RGB-D, 3D CAD models, etc.), supervision constraints (e.g.,

supervision with pose labels, no supervision, etc.) as well as careful loss function

engineering (e.g., reconstruction loss, intermediate representation losses, direct pose

regression loss etc.). In the following section, we will explore notable works that use

such deep-learning methods.

RGB Image + Pose Labels + CAD Model: Xiang et al. (2018) propose a

generic end-to-end object detection and 3D object pose prediction framework named

PoseCNN. The authors designed a CNN that takes as input a single RGB image

and predicts the classes and poses of objects captured in the image. Training is

13

Figure 9: PoseCNN runs first predict semantic labels, which are used to predict object
locations. The combination of these outputs is used to finally predict the rotation of
each object.9

supervised by providing ground-truth pose labels with respect to the 3D model space

of the object in consideration. As such, a 3D CAD model of every object must be

provided in training time.

The CNN runs in three stages as illustrated by Figure 9 and as detailed below:

1. Semantic Labeling stage, wherein the RGB input image is convolved down to a

dimension of 64 (with additional pooling and summing of feature maps), then

deconvolved up to the original size of the input image. These embedded features

are then passed to a fully-connected (FC) layer of size n, where n is the number

of semantic classes (i.e., object types). The goal of this stage is to assign for

each pixel a probability of belonging to an object class. Softmax cross-entropy

loss is used to predict a probability distribution for each pixel.

2. 3D Translation Estimation stage, wherein the network predicts the 2D object

9Image credit Xiang et al. (2018)

14

Figure 10: Each pixel casts a vote in the form of a unit vector pointing towards its
prediction of the center of the object. 10

center in the image as well as 3D depth value for that center. Specifically, for

each pixel the network predicts a unit vector that points towards the predicted

center, as well as a depth value for that center. Finally, each pixel’s center

predictions are weighted by its semantic labeling, and fed into a voting layer

to decide on a final object center prediction. Figure 10, illustrates the voting

process. The final 2D object center prediction (and the depth value) is used to

recover the 3D object center assuming a pinhole camera model.

3. 3D Rotation Estimation stage, wherein the semantic labels and center predic-

tions as well as the convolved image features are pooled together to generate

a rotation prediction for each object. The authors represent a rotation by a

quaternion, which is a widely used 4D vector representation of rotations. In

this stage of training, the network requires the presence of a 3D CAD model

for each object. This is because the network’s rotation loss function requires

sampling 3D points on a CAD model representing the object. Formally, the loss

function is defined by Equation 2.1, where M is the set of 3D model points,

m is the number of points, and q and q̂ are the ground-truth and predicted

10Image credit Xiang et al. (2018)

15

Figure 11: A subset of symmetry cases that give rise to pose ambiguities. For example,
a sphere has the same rotation regardless of the viewpoint, even though we might
arbitrarily assign to a view a specific rotation (i.e., a one-to-many mapping from
image to pose) 11

quaternions respectivley. We note that this loss measures the average squared

distance between every point on the predicted rotated model and the closest

point on the ground-truth rotated model. This design avoids penalizing pose

predictions that are deemed incorrect due to symmetries in the model. Figure

11 describes a subset of these symmetric cases.

SLoss(q, q̂) =
1

2m

∑
x1∈M

minx2∈M ‖R(q̂)x1 −R(q)x2‖2 (2.1)

RGB-D Image + Pose Labels +CAD Model: In the previous PoseCNN method,

we note that the predicted poses can be refined using Iterative Closest Point (ICP)

if depth data is available. In Wang et al. (2019), the authors suggest that decoupling

color and depth information in such a way is costly (i.e., the extra refinement and

post-processing steps are not ideal). Instead, the authors propose DenseFusion, a

generic framework for estimating poses of known objects that fuses RGB and depth

11Image credit Sundermeyer et al. (2018)

16

data in a novel way.

DenseFusion begins by segmenting the input RGB image into an N+1-channelled se-

mantic segmentation mask to predict the existence of up to N different objects in the

scene. The authors reuse the same segmentation network used by PoseCNN. Then,

DenseFusion extracts information from the color and depth channels separately. In-

tuitively, the authors argue that color embeddings and geometric (depth) embeddings

reside in different spaces, requiring separate processing pipelines. The following is an

overview of these embeddings:

1. Depth Embeddings: The network first converts the segmented depth pixels into

point clouds using the known camera intrinsics. Thus, if the segmentation

network detected k semantic segments, then k point clouds will be generated.

Each point cloud is then processed individually to generate embeddings using

network that uses symmetric reduction modules (e.g., max-pooling, average-

pooling, etc.), pioneered by Qi et al. (2017)’s PointNet. The basic idea is that

the unordered-set format of point clouds should have no impact on the learned

features from said point clouds.

2. Color Embeddings: The network is a CNN-based encoder-decoder that maps

each pixel in the segmented region into a higher dimension embedding that

encodes appearance information at that input location.

Thus far, the network extracted two heterogeneous pieces of information: depth em-

beddings encoding geometric information at each point in the point cloud, and color

embeddings encoding appearance information at each pixel in the image. DenseFusion

fuses these two embeddings by creating pixel-wise dense intermediate vectors. This

is done by mapping each point in the point cloud to its corresponding pixel location,

17

Figure 12: The predicted poses are used to transform the input point cloud, which
is then used to iteratively predict the next residual pose. This differentiable iterative
refinement speeds up the inference process as ICP is not needed anymore. 12

and concatenating the color embedding with the depth embedding. Therefore, the

network generates a pixel-wise dense vector for each point on the point cloud. Finally,

each per-pixel dense vector is fed into a simple regression network that predicts the

pose of its associated object. This network uses the same loss function defined by

Equation 2.1.

Instead of using ICP to refine the predicted poses, DenseFusion makes use of the

available depth channel to refine the pose as the network trains (i.e., pose refinement

is built into the network). The network considers the previously predicted pose as

an estimate of the canonical frame of the target object, and transforms the input

point cloud obtained by the depth channel into this estimated frame. Intuitively, the

transformed point cloud more accurately depicts the final target pose. The network

thus continues to refine the pose by predicting residual poses in an iterative manner.

Figure 12 illustrates this process.

12Image credit Wang et al. (2019)

18

RGB Image + Pose Labels: In Mahendran et al. (2018), the authors tackle the

problem of 3D object pose prediction from a single RGB image without the use of

a 3D CAD model. This methodology uses a CNN to perform a mix of classification

and regression, as the authors note that using one or the either alone comes with

disadvantages:

1. Classification Only: Discretizing the orientation space into bins can lead to

coarse (thus inaccurate) pose predictions. Many such networks will use a cross-

entropy loss function to perform standard classification, which neglects the Rie-

mannian attributes of the orientation space (as opposed to simpler Euclidean

attributes iconic of flat spaces).

2. Regression Only: These overcome the descretization issues that arise from classi-

fication by predicting continuous poses. However, the authors note that current

regression methods still employ Euclidean distance measures to compare poses,

which again neglects Riemannian attributes. Additionally, regression methods

do not fully deal with symmetry issues that are displayed in Figure 11, as they

generally predict a simple pose without a confidence score.

Figure 13: The feature network (ResNet-50) output is shared by both the Bin and
the Delta networks. The predictions of the latter networks are combined with a
combination function g(., .). In the case of the Geodesic Bin & Delta model, g(., .) is
simply the addition function. 13

19

This mixed method is dubbed Bin & Delta, wherein a coarse pose is first predicted

using the classifier, and a refinement is applied on the prediction using the regressor.

The paper showcases a variety of Bin & Delta model variations (e.g., geodesic, Rie-

mannian, probabilistic, relaxed, etc.). We chose to present the geodesic Bin & Delta

model for its simplicity and interpretability. A summary of the network is provided

in Figure 13.

Euclidian Loss vs. Geodesic Loss: Assuming the use of a quaternion representa-

tion, the standard Euclidean loss between a ground-truth rotation q and a predicted

rotation q̂ is defined by Equation 2.2.

ELoss(q, q̂) = ‖q− q̂‖2 (2.2)

In contrast, the geodesic loss that takes into account the Riemannian attributes of

the orientation space is defined by Equation 2.3. The authors remark that such

distance (loss) function computes the shortest distance between two points along

the Riemannian manifold, which outperforms Euclidean distance as measure of the

“closeness” in the context of orientation representations. This is the loss adopted in

the Bin & Delta models.

GLoss(q, q̂) = 2 cos−1(|〈q, q̂〉|) (2.3)

Feature Network: Components in the overall network described by Figure 13 share a

common feature network used to extract features from input RGB images. Common

to transfer-learning approaches, the authors use the ResNet-50 by He et al. (2016)

13Image credit Mahendran et al. (2018)

20

minus the last output layer.

Bin Network (Classifier): The pose space is first discretized using K-Means: the

training data is used to split the pose labels into K similar categories. The output

features of the feature network are then fed into the bin network to classify the pose

of the object of interest. Standard cross-entropy loss is used, and the output of the

bin network is a pose label that falls in one of the K clusters. The predicted pose

label has a corresponding pose q mapped to it (e.g., the mean pose of the K-means

cluster).

Delta Network (Regressor): The same features generated by the feature network are

finally fed into the delta network to predict a residual pose δq. This residual pose

can be thought of as an ”additional” pose applied to the coarsely predicted pose in

the previous stage. The loss used is the geodesic loss previously defined, with inputs

being the ground-truth pose q∗ and the combined pose q+δq
‖q+δq‖ (the normalization is

applied assuming quaternions are used). The process is nicely interpretable as shown

in Figure 14.

Figure 14: Points on the plane (red) represent various poses. The space is split into
four clusters, with each cluster corresponding to a coarse pose (blue z points). The
bin network predicts the coarse pose (blue vector), and the delta network refines the
prediction (green vector). The overall pose is noted as y. 14

21

RGB Image + CAD Model: The previous methods we have explored used ground-

truth pose labels. In reality, it is challenging to collect accurate and robust pose data.

Pose has to be defined with respect to a specific frame of reference, and most likely

with a uniform camera model. Additionally, pose can be represented in many ways

(e.g., quaternions, axis-angles, Euler angles, transform matrix, etc.). Thus, there is a

general interest in predicting poses without providing the learning model with ground-

truth pose labels (i.e., pose-unsupervised). Pavlakos et al. (2017)’s work circumvents

this issue by training a model that is pose-unsupervised. The core idea is to use

keypoint labels instead of pose labels to predict the 6DOF object pose.

Figure 15: The stacked-hourglass model used to output semantic keypoints of an
object given an RGB image.15

Assuming that objects of interests are given as an input image with associated bound-

ing boxes obtained from off-the-shelf object detectors (e.g., Ren et al. (2017)’s Faster-

RCNN), the following two steps are executed:

1. Keypoint Localization: This step consists of a CNN that takes as input a single

RGB image and produces a set of heatmaps. Each heatmap corresponds to a

keypoint detection, and the corresponding heatmap intensity is proportional to

14Image credit Mahendran et al. (2018)
15Image credit Pavlakos et al. (2017)

22

the network’s detection confidence. The network consists of two stacked hour-

glass modules. Each module essentially downsamples the input down to 4 × 4

feature maps, then upsamples those back to the original input size. The first

module produces coarse heatmaps that can be refined with intermediate super-

vision, while the last module produces the network’s final answer. Supervision

is done on ground-truth heatmaps generated by centering a gaussian distribu-

tion around each keypoint, with a standard deviation set to one. The network

architecture is shown in Figure 15.

2. Pose Estimation: This step seeks to fit the predicted 2D keypoints from the

previous step to 3D keypoints. The authors suggest two approaches: (1) use

PnP just like in typical keypoint correspondence methods or (2) fit a deformable

shape model to the 2D keypoints. The former requires a CAD model per in-

stance, while the latter only requires a deformable model per class of objects.

A visualization of the process outputs is shown in Figure 16.

Figure 16: From left to right: input RGB image, semantic keypoints from keypoint
localization, deformable shape (chair) overlaid over the input image, 3D model with
predicted pose. 16

16Image credit Pavlakos et al. (2017)

23

2.2. 3D Parametric Object Decomposition

2.2.1. Problem Definition and Importance

In modern solutions to various computer vision problems (including 3D object pose

estimation), the use of high-dimensional and complex 3D representations is prevalent.

Examples of such representations are the familiar point clouds and 3D CAD models.

They typically provide a high level of fidelity, enabling capturing finer shape and ap-

pearance intricacies. However, due to the large amount of information they typically

encode, the use of such complex representations been recognized as a bottleneck in

some areas of computer vision. For example, Park et al. (2019a) mention that it is

unfeasible to expect the availability of a 3D CAD model for every object in 3D object

pose estimation.

Figure 17: Illustrations of complex meshes (gray) and their corresponding cuboid
volumetric representations (colored). 17

As such, the community has seen a reignited interest in representing 3D objects in a

compact manner. Specifically, recent works investigated the problem of object decom-

17Image credit Tulsiani et al. (2017)

24

position. That is, given an input object O with an associated high-dimensional input

I (e.g., 3D CAD model, point cloud, etc.), the goal is to predict up to M distinct

volumetric parts that form O. An example of volumetric primitives would be a gen-

eralized cylinder as introduced by Thomas Binford in 1971. The key intuition is that

the general shape, structure, and hierarchy of the 3D object is preserved even when

represented by simpler primitive shapes. Examples of such compact representations

can be seen in Figure 17.

2.2.2. Methodologies

Just like in 3D pose estimations, the availability of commercial GPUs and the ad-

vances in deep-learning (e.g., CNNs) allowed for more innovation in this space. To be

specific, Tulsiani et al. (2017) explored a data-driven approach to represent objects

as a collection of cuboids. Paschalidou et al. (2019) then followed-up with an ap-

proach that uses a more refined representation that uses superquadrics. We provide

an overview of both of these recent works in the following subsections.

Cuboids

Tulsiani et al. (2017) use the simplest volumetric primitives – rigidly transformed

cuboids – to represent objects as seen in Figure 17. The authors emphasize that while

non-data-driven approaches had successes in solving instance-based representation

using handcrafted cues, this data-driven approach provides a consistent representation

across instances: the output is an indexed set of primitives instead of an unordered

set of primitives.

Tulsiani et al. (2017)’s approach uses a CNN to predict these primitives in an unsu-

pervised way. The authors argue that even without direct labels of primitives, it is

possible to engineer a loss function that measures whether the predicted clusters of

primitives matches the target object.

25

Representing Cuboids: Each predicted primitive is encoded as a triple (z,q, t)

where z represents the parametric shape of the untransformed primitive, and (q, t)

represent its pose (rotation, translation). Intuitively, z is the ’what’ and (q, t) are

the ’where’ of the primitive. In particular, we assume an origin-centered cuboid with

z = (w, h, d), its extents in the three dimensions. The authors make use of the

(squared) distance field function defined by Equation (2.7), where p = (px, py, pz)

is an arbitrary 3D point. This function computes the distance between p and the

closest point on the cuboid. It is clear that if p is on the surface/inside the cuboid,

the distance field will output 0.

Ccub(p; z)2 = (|px| − w)2+ + (|py| − h)2+ + (|pz| − d)2+ (2.4)

Formally, the distance field of the transformed cuboid parametrized by z and com-

puted on a point p is denoted by Ccub(p′; z,q, t), where p′ = R−1(p − t) and R−1

refers to the inverse application of the quaternion q.

Coverage and Consistency Losses: Comparing the target object O and a pre-

dicted transformed cuboid Pm = (zm,qm, tm) requires a notion of sampling points on

either shapes. We denote this sampling process with p ∼ S(O) (or p ∼ S(Pm)). Con-

cretely, the authors define a coverage loss and a consistency loss. The former refers

to how well the predicted shape covers the target object. Equation 2.5 describes this

loss, as it essentially computes the minimum distance between a point sampled on

the object O and the surface of any of the predicted shapes.

Lcov(Pm, O) = Ep∼S(O)

∥∥∥min
m
Ccub(p′;Pm)

∥∥∥2 (2.5)

26

The latter refers to how well the target object covers the predicted shape. Equation

2.6 describes this loss in a similar manner to the coverage loss.

Lcons(Pm, O) =
∑
m

Ep∼S(Pm) ‖Cobj(p′;O)‖2 (2.6)

In this case, we use the object distance field, which is Cobj(p;O) = minp′∈O ‖p′ − p‖2.

During training, both of these losses weighted together as they essentially compete

against each other: coverage favors maximal representation, and consistency favors

compactness. A clear overview of the training process is shown in Figure 18.

Figure 18: The input object is discretized using an occupancy grid and is fed into a
3D CNN. The predicted shapes are then compared to the original object using the
coverage and consistency losses. 18

Superquadrics

While Tulsiani et al. (2017)’s method has seen great success in showcasing patterns in

shape categories as well as shape manipulation, it still lacks in complexity as cuboids

do not capture more complex shapes (e.g., curved objects, spheres). Paschalidou

et al. (2019) circumvent this issue by considering a diverse shape vocabulary – su-

perquadrics (Figure 19) – leading to more expressive scene abstractions. Figure 20

illustrates this difference.

18Image credit Tulsiani et al. (2017)

27

Figure 19: The superquadric shape vocabulary is more complex and can represent
curvatures well. 19

Figure 20: Tulsiani et al. (2017)’s cuboid method compared to Paschalidou et al.
(2019)’s superquadric method. 20

19Image credit Paschalidou et al. (2019)

28

Paschalidou et al. (2019) borrow the same CNN architecture used in Tulsiani et al.

(2017), except that the prediction layers that output M cuboids now output M

superquadrics. We explain the superquadric representation below:

Representing Superquadrics: A superquadric is parametrized by shape param-

eters (α, ε, η, ω) and the usual pose parameters (q, t) that define the rotation and

translation. Formally, the surface vector r of a superquadric is given by Equation 2.7.

ε values are bound between [0.1, 1.9] to prevent non-convex shapes, as the authors

argue the rarity of occurrence of such shapes.

r(η, ω) =


α1 cosε1 η cosε2 ω

α2 cosε1 η sinε2 ω

α3 sinε1 η

 (2.7)

Point Sampling: Defining a distance field for every possible superquadric surface

is difficult. The authors resort to a point sampling strategy to compute the losses

defined below. Concretely, the network samples N points on the target object O, and

K points on the surface of each predicted superquadric Sm. The authors refer to the

superquadric sampling technique presented in Pilu and Fisher (1995) that selects η

and ω in a way that allows for uniform point sampling. We denote the sampled object

points by xi, and the sampled superquadric points on the mth primitive by ymj . All

following loss computations are done in the local space of a given superquadric. We

thus denote by xmi the transformed xi point in the mth primitive’s space.

Reconstruction Loss: Much like in Tulsiani et al. (2017), Paschalidou et al.

(2019) employ a bi-directional reconstruction loss that measures coverage and consis-

20Image credit Paschalidou et al. (2019)

29

tency. Given the sampled points, the network computes a coverage loss by computing

the closest point on the target object for every sampled superquadric surface point.

The resulting coverage loss is described by Equation 2.8.

Lcov(Sm, O) =
1

K

K∑
k=1

min
i=1,...,N

‖xmi − ymk ‖
2 (2.8)

Similarly, the network computes a consistency loss by computing the closest su-

perquadric surface point for every sampled object point. This is described by Equation

2.9.

Lcons(Sm, O) =
∑
xi

min
m

[min
k=1,...,K

‖xmi − ymk ‖
2] (2.9)

We note that the loss functions look very similar, except that the former minimizes

the distance over all object points, while the latter minimizes the distance over all

superquadric points. During training, both losses are weighted with 1.2 and 0.8

respectively, leading to good empirical results showcased by Figure 20.

30

3. Proposed Methodology

Ultimately, our work aims to combine recent successes in 3D object pose estimation

with insights from object decomposition methods such as Paschalidou et al. (2019)’s

superquadric decomposition. We thus propose the following method for 3D object

pose estimation. Our approach is similar in the work described in Mahendran et al.

(2018), wherein the pose is directly regressed from a single RGB image. However, we

require additional pre-processing steps, namely the availability of a decomposition of

the object into parts. Additionally, to focus the scope of this work, we have opted to

only consider instance-based object pose estimation.

3.1. Data Generation

Our method predicts the pose of an object given an RGB image. We require pose

supervision data to be available during training. This section outlines our data gener-

ation pipeline used to (1) construct a dataset of input RGB images and (2) associate

pose labels to each image.

3.1.1. Object-level Data

We use data from the publicly available ShapeNet repository, which is a 3D CAD

model dataset organized in categories. Our work uses 3D CAD models from ShapeNet’s

chair category to conduct experiments. Since we focus on instance-based pose predic-

tion, each trained model is only applicable to its associated chair instance. Samples

from the chair category are shown in Figure 21.

To generate RGB image data, we first load the model in a 3D model editor. We then

center a sphere around the center of the model, fix the virtual camera on the sphere’s

surface uniformly at random, and render images of fixed dimensions from that angle.

This directly gives us the associated object pose, since we know the camera’s relative

31

Figure 21: Samples of 3D CAD models within the chair category of the ShapeNet
dataset.

Figure 22: Samples of renderings of a specific instance from the chair category of
ShapeNet. Each image has an associated object pose inferred from the camera’s
position at rendering time.

32

Figure 23: Images of the three chairs used in experiments. Upper row is the orig-
inal 3D model, bottom row is the corresponding superquadric decomposition. The
instances were picked with the intent of varying the shape and topology of the chairs.
From left to right: instance #1, instance #2, instance #3.

position to the target object. Examples of generated data are shown in Figure 22.

As will be elaborated in Section 4, we generated data for three instances visualized

in Figure 23. Concretely, we generated a total of 30,000 images: 10,000 per instance,

with the a 70-30% train-test split.

3.1.2. Parts-level Data

Now that we have RGB images with associated object poses, we further decompose

the object into M volumetric primitives and retrieve each of their poses. The goal is

to obtain M+1 pose labels for every RGB input image: one label for the object pose,

and M labels for the object’s parts. As will be described in Section 3.2, the aim is to

first predict M parts poses, and use these predictions to get a combined object pose

prediction.

33

Figure 24: On the left is the superquadric decomposition of the original 3D model
displayed on the right. Each of the 11 parts is uniquely colored.

We use Paschalidou et al. (2019)’ superquadric decomposition to decompose the chair

instance 3D CAD model into M = 11 primitives as shown in Figure 24. As previously

explained, the result of the decomposition comes with the local pose of each primitive.

Finally, we apply the object pose obtained from the previous section to transform the

primitives from their local pose space to the object pose space.

3.2. Model Training

3.2.1. Architecture

Much like in Mahendran et al. (2018), the network architecture we used is composed

of a feature network and a regressor network. The feature network is a pre-trained

ResNet-50 by He et al. (2016) that extracts image features from the RGB input

images. The regressor network takes as input the image features and first predicts M

poses, corresponding to the parts of the object of interest. These M poses are then

fed into an object pose retrieval module (i.e., a multi-layer perceptron) that infers the

overall object pose given the predicted parts poses. Using this sequential prediction

structure forces the network to first predict good M object poses in order to then

obtain a good overall pose prediction. The architecture is shown in Figure 25.

34

Figure 25: The RGB input image is passed through a ResNet-50 from which image
features are extracted. The features are individually used to regress M rotations (red)
and M translations (blue), which is one pose per object part. The M part poses are
then passed through a fully-connected (FC) layer, which then outputs a single object
rotation (red).

3.2.2. Loss Functions

Since the objective of our work is to compare parts-based regression against non-parts-

based pose regression, we decided to use a simple L2 distance loss (i.e., Euclidean

metric) to compute losses for both rotations and translations. Our intuition is that

as long as we compare the models consistently, then using a Riemannian distance

metric or a Euclidean distance metric should not be impactful for the comparison’s

sake.

Using the L2 distance described by Equation 2.2, we compute M losses, one for every

part. We then average these M losses to obtain a parts loss Lparts. We do the same

operation for the overall object pose to get Lobj. The final (differentiable) loss value

is Lparts + Lobj.

35

3.3. Model Evaluation

The collected images and their associated poses have been split into train and test

sets. Evaluation is done solely on the test set. We used a standard pose evaluation

metric called the Average Distance (ADD) shown in Equation 3.1. Formally, given

the ground-truth rotation R and translation T, and the predicted rotation R̂ and

translation T̂, the ADD computes the average pairwise distance between points on

the 3D model M transformed by the ground-truth pose (R,T) and points on the

3D model transformed by the predicted pose (R̂, T̂). Intuitively, ADD measures how

well the predicted rotated 3D model is overlaid on top of the ground-truth rotated

model. Thus, this metric measures the accuracy of our object pose prediction.

ADD =
1

|M|
∑
x∈M

∥∥∥(Rx + T)− (R̂x + T̂)
∥∥∥ (3.1)

36

4. Experiments

We first present results for the baseline method that uses direct pose regression. We

then show our method’s results: parts-based pose regression. We follow by a dis-

cussion comparing both methodologies by contrasting their Average Distance (ADD)

curves. Finally, we show results obtained by training the models using a rotation

representation different from quaternions: 6D rotation representation.

4.1. Baseline: Direct Pose Regression

For direct regression, we follow the methodology of Mahendran et al. (2018) except

that we do not use an intermediate coarse classifier. This is to maintain consistency

for the sake of comparison. That is, the baseline network is a ResNet-50 passed to a

multi-layer perceptron that predicts the overall object pose.

The network is trained for 100 epochs with a learning rate µ = 0.001. We plot the

L2 loss after each epoch, as shown in Figure 26. Every 10 epochs, we evaluate the

model’s performance on the entire test set using the ADD metric. The plot in Figure

27 showcases this performance evaluated on each of the three chair instances.

Figure 26: Loss curves from training the baseline model on the first chair instance.

37

Note that this performance need not be monotonically decreasing as the model trains

more. The model may overfit on the training data, and as such starts to generalize

worse on the test set. To illustrate, the best model for instance #2 is the one trained

until epoch 80 (lowest ADD), while the best models for the other two instances are

those trained until epoch 100.

Figure 27: Average Distance (ADD) curves obtained using the baseline method. Each
curve represents a single model trained on a specific chair instance.

4.2. Our Method: Parts-Based Pose Regression

Similar to the baseline model, we train our network for 100 epochs with a learning rate

µ = 0.001. The L2 loss plots are shown in Figure 28. The performance evaluation is

shown in Figure 29. We note that like the baseline, our method’s performance varies

in performance depending on the chair instance. However, in all three cases, the ADD

curves exhibit a ”valley” shape, suggesting some level of stability during training.

38

Figure 28: Loss curves from training a model according to our method on the first
chair instance.

Figure 29: Average Distance (ADD) curves obtained using our method. Each curve
represents a single model trained on a specific chair instance.

39

4.3. Comparison

From the ADD Figures 27 and 29, we notice that models trained using our methods

exhibit smoother performance compared to the baseline. For example, the baseline

seems to overfit quite often, as it has trouble finding a stable and generalizing model

between epochs 30 and 60 for instance #2, while our method has less bumpy ADD

values in the same range.

Figure 30 showcases ADD comparisons directly. Each figure compares the ADD

values for a specific instance using a model trained with the baseline method and

another model trained with our methodology. In all cases, our method outperforms

the baseline. Table 1 summarizes these results by showing the minimum and average

ADD values per instance.

Chair Instance Instance #1 Instance #2 Instance #3

Average Distance Best Average Best Average Best Average

Baseline (quat) 0.0155 0.0490 0.0557 0.1926 0.0596 0.1267

Our Method (quat) 0.0108 0.0593 0.0319 0.1555 0.0592 0.0979

Table 1: Average Distance (ADD) measurements for the trained models using quater-
nion rotation. Bolded numbers represent the better measurement in the respective
column. The title ”best” refers to the minimum ADD out of all epochs, and ”average”
denotes the mean ADD within all epochs.

We additionally provide visual comparison figures. For each chair instance, we ren-

dered its corresponding 3D CAD model using the ground-truth pose in red, and

contrasted the predicted poses by rendering an transparent model using the predic-

tions. The visual results show that our method generally does a better job compared

to the baseline. The renders for a specific instance are shown in Figure 31. The rest

of the instances’ renders are showcased in the Appendix, Figures 36 and 37.

40

Figure 30: ADD curves comparing the baseline and our method. From top to bottom:
instance #1, instance #2, instance #3.

41

Figure 31: Chair instance #3 results. The true model is displayed in red. The baseline
prediction is in green. Our model’s prediction is in blue.

42

4.4. Quaternions vs. 6D Rotation Representation

Zhou et al. (2019) demonstrate that the widely used 3D and 4D representations

of rotations, such as Euler angles and quaternions, are discontinuous and are thus

difficult for neural networks to learn. To circumvent this issue, they propose the

usage of the 6D representation of rotation, which is proven to be continuous and thus

easier to learn. We trained both the baseline network and our network using this 6D

representation, and compared it to the models trained using quaternions. Figures 33

and 32 showcase the results on an instance-by-instance basis.

Chair Instance Instance #1 Instance #2 Instance #3

Average Distance Best Average Best Average Best Average

Baseline (quat) 0.0155 0.0490 0.0557 0.1926 0.0596 0.1267

Baseline (6d) 0.0134 0.0700 0.0480 0.2231 0.0759 0.1585

Our Method (quat) 0.0108 0.0593 0.0319 0.1555 0.0592 0.0979

Our Method (6d) 0.0083 0.0793 0.0340 0.2809 0.0563 0.0943

Table 2: Average Distance (ADD) measurements for the trained models using 6D
rotation.

We observe that using 6D rotation seems to result in noisier ADD measurements in

the majority of the cases. For example, both methods suffer from wavy ADD curves

when using 6D rotation for the first chair instance. However, our method seems to

be robust to this representation change when it comes to the third chair instance:

the results are better, and the ADD curve remains smooth as shown in Figure 32.

In contrast, direct regression has better but noisier results as shown in Figure 33.

Table 2 provides a comprehensive summary of the results, which suggest that it is

inconclusive whether using 6D rotation over quaternions is better for our purposes.

43

Figure 32: ADD curves comparing our method using quaternions and using 6D rota-
tion. From top to bottom: instance #1, instance #2, instance #3.

44

Figure 33: ADD curves comparing the baseline using quaternions and using 6D rota-
tion. From top to bottom: instance #1, instance #2, instance #3.

45

5. Conclusion

In this work, we present a supervised 3D object pose estimation method inspired by

regression-based methodologies. We take advantage of recent advancements in object

decomposition and incorporate part-based pose estimation in the training pipeline.

The overall result suggests that intermediately learning the pose of the parts allows

for better learning of the overall pose of the object. As such, extracting the object

pose from the parts’ poses can be thought of like a pose refinement process.

While providing better results, the usage of the decomposed parts is still a costly

process. Indeed, we assume the availability of a 3D model to learn the decomposition

from, in addition to a larger set of pose labels resulting from the pose of the parts.

As such, we would like to relax the assumptions made in this work in the future.

For example, attempting parts-based pose prediction using generalized parts learned

from a single 3D model category (e.g., all chairs) may allow for category-based pose

prediction. This may beneficially lead to only requiring one canonical 3D model per

category. Additionally, resorting to an unsupervised superquadric reconstruction of

the model from a single image may be a promising way to remove restrictive pose

supervision.

46

APPENDIX

Figure 34: Loss curves from training the baseline model, one model per instance.

47

Figure 35: Loss curves from training models according to our method, one model per
instance.

48

Figure 36: Chair instance #1 results. The true model is displayed in red. The baseline
prediction is in green. Our model’s prediction is in blue.

49

Figure 37: Chair instance #2 results. The true model is displayed in red. The baseline
prediction is in green. Our model’s prediction is in blue.

50

BIBLIOGRAPHY

E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother. Learning
6D object pose estimation using 3D object coordinates. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8690 LNCS(PART 2):536–551, 2014. ISSN 16113349.
doi: 10.1007/978-3-319-10605-2 35.

Z. Cao, Y. Sheikh, and N. K. Banerjee. Real-time scalable 6DOF pose estimation
for textureless objects. Proceedings - IEEE International Conference on Robotics
and Automation, 2016-June:2441–2448, 2016. ISSN 10504729. doi: 10.1109/ICRA.
2016.7487396.

A. Collet and M. Martinez. MOPED: Object Recognition and Pose Estimation for
Manipulation. URL https://personalrobotics.ri.cmu.edu/projects/moped.

php.

J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for
object detection, tracking, and action recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(11):2188–2202, 2011. ISSN 01628828. doi:
10.1109/TPAMI.2011.70.

S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from RGB-D
images for object detection and segmentation. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8695 LNCS(PART 7):345–360, 2014. ISSN 16113349. doi: 10.
1007/978-3-319-10584-0 23.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2016-Decem:770–778, 2016. ISSN 10636919. doi: 10.1109/
CVPR.2016.90.

S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lep-
etit. Multimodal templates for real-time detection of texture-less objects in heavily
cluttered scenes. Proceedings of the IEEE International Conference on Computer
Vision, pages 858–865, 2011. doi: 10.1109/ICCV.2011.6126326.

S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab.
Model based training, detection and pose estimation of texture-less 3D objects in
heavily cluttered scenes. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7724

51

LNCS(PART 1):548–562, 2013. ISSN 03029743. doi: 10.1007/978-3-642-37331-2
42.

W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab. Deep learning of local
RGB-D patches for 3D object detection and 6D pose estimation. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 9907 LNCS:205–220, 2016. ISSN 16113349. doi:
10.1007/978-3-319-46487-9 13.

V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate O(n) solution to
the PnP problem. International Journal of Computer Vision, 81(2):155–166, 2009.
ISSN 09205691. doi: 10.1007/s11263-008-0152-6.

J. J. Lim, A. Khosla, and A. Torralba. FPM: Fine pose parts-based model with
3D CAD models. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8694 LNCS
(PART 6):478–493, 2014. ISSN 16113349. doi: 10.1007/978-3-319-10599-4 31.

D. G. Low. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, pages 91–110, 2004. URL https://www.cs.ubc.ca/

{~}lowe/papers/ijcv04.pdf.

S. Mahendran, M. Y. Lu, H. Ali, and R. Vidal. Monocular Object Orientation Es-
timation using Riemannian Regression and Classification Networks. 2018. URL
http://arxiv.org/abs/1807.07226.

C. Niu, J. Li, and K. Xu. Im2Struct: Recovering 3D Shape Structure from a Single
RGB Image. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 4521–4529, 2018. ISSN 10636919. doi:
10.1109/CVPR.2018.00475.

K. Park, A. Mousavian, Y. Xiang, and D. Fox. LatentFusion: End-to-End Differen-
tiable Reconstruction and Rendering for Unseen Object Pose Estimation. 2019a.
URL http://arxiv.org/abs/1912.00416.

K. Park, T. Patten, and M. Vincze. Pix2pose: Pixel-wise coordinate regression of
objects for 6D pose estimation. Proceedings of the IEEE International Conference
on Computer Vision, 2019-Octob:7667–7676, 2019b. ISSN 15505499. doi: 10.1109/
ICCV.2019.00776.

D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics revisited: Learning
3D shape parsing beyond cuboids. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2019-June:10336–10345,
2019. ISSN 10636919. doi: 10.1109/CVPR.2019.01059.

52

G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis. 6-DoF object
pose from semantic keypoints. Proceedings - IEEE International Conference on
Robotics and Automation, pages 2011–2018, 2017. ISSN 10504729. doi: 10.1109/
ICRA.2017.7989233.

M. Pilu and R. B. Fisher. Equal-distance sampling of superellipse models. pages
257–266, 1995.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning on point sets
for 3D classification and segmentation. Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:77–85, 2017.
doi: 10.1109/CVPR.2017.16.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(6):1137–1149, 2017. ISSN 01628828. doi: 10.1109/
TPAMI.2016.2577031.

ShapeNet. Shapenet dataset. URL https://www.shapenet.org/.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for CNN: Viewpoint estimation
in images using CNNs trained with rendered 3D model views. Proceedings of the
IEEE International Conference on Computer Vision, 2015 Inter(Sec 2):2686–2694,
2015. ISSN 15505499. doi: 10.1109/ICCV.2015.308.

M. Sundermeyer, Z. C. Marton, M. Durner, M. Brucker, and R. Triebel. Implicit
3D orientation learning for 6D object detection from RGB images. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 11210 LNCS(2010):712–729, 2018. ISSN
16113349. doi: 10.1007/978-3-030-01231-1 43.

A. Tejani, R. Kouskouridas, A. Doumanoglou, D. Tang, and T. K. Kim. Latent-
Class Hough Forests for 6 DoF Object Pose Estimation. IEEE transactions on
pattern analysis and machine intelligence, 40(1):119–132, 2018. ISSN 19393539.
doi: 10.1109/TPAMI.2017.2665623.

B. Tekin, S. N. Sinha, and P. Fua. Real-Time Seamless Single Shot 6D Object Pose
Prediction. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 292–301, 2018. ISSN 10636919. doi: 10.
1109/CVPR.2018.00038.

S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik. Learning shape abstrac-
tions by assembling volumetric primitives. Proceedings - 30th IEEE Conference on

53

Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:1466–1474,
2017. doi: 10.1109/CVPR.2017.160.

C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, and S. Savarese.
DenseFusion: 6D object pose estimation by iterative dense fusion. Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2019-June:3338–3347, 2019. ISSN 10636919. doi: 10.1109/CVPR.2019.00346.

P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3D pose
estimation. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 07-12-June(1):3109–3118, 2015. ISSN 10636919.
doi: 10.1109/CVPR.2015.7298930.

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A Convolutional Neural
Network for 6D Object Pose Estimation in Cluttered Scenes. 2018. doi: 10.15607/
rss.2018.xiv.019.

Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation represen-
tations in neural networks. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2019-June:5738–5746, 2019. ISSN
10636919. doi: 10.1109/CVPR.2019.00589.

M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M. Lecce,
and K. Daniilidis. Single image 3D object detection and pose estimation for grasp-
ing. Proceedings - IEEE International Conference on Robotics and Automation,
pages 3936–3943, 2014. ISSN 10504729. doi: 10.1109/ICRA.2014.6907430.

54

